CASE NARRATIVE Client: Sundance Consulting, Inc. Project: Fort Wingate, New Mexico Report Number: 280-76166-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

Revision - 01/06/2015

The SVOC method reference was changed from 8270C to 8270D or 8270_DOD to be consistent throughout the report.

Sample Receipt

Fourteen samples were received on 10/30/2015 9:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 9 coolers at receipt time were 0.0°C, 0.1°C, 0.4°C, 0.4°C, 0.4°C, 0.5°C, 0.5°C, 1.0°C and 2.1°C.

One of four 1L unpreserved amber glass bottles was received broken for sample TMW39S102015 (280-76166-10). Sufficient volume remains to perform all the requested analyses per the chain of custody. However, re-extraction or re-analysis may not be possible due to limited volume if requested or required. The client was notified on 10/30/2015.

Please note the Caprolactam data are reported under separate cover (280-76166-2), as the laboratory does not hold DOD ELAP certification for this compound.

In accordance with the client's instructions received on 10/29/2015, the requested 8011 EDB analyses will be reported under a separate cover (280-76166-3).

No other anomalies were encountered during sample receipt.

GC/MS Volatiles - 8260B

Samples TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TB-04-102015 (280-76166-7), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 11/10/2015.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

MS/MSD analyses for analytical batch 280-303294 were not requested.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semivolatiles - 8270D

Samples TMW40S102015 (280-76166-1), TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13) and TMW41102015 (280-76166-14) were analyzed for semivolatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 11/02/2015 and analyzed on 11/18/2015.

Please note the Caprolactam data are reported under separate cover (280-76166-2), as the laboratory does not hold DOD ELAP certification for this compound.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

Sample TMW18102015 (280-76166-13) was received with pH 9. Samples are normally received with pH 6-8.

Surrogate Terphenyl-d14 was recovered below the QC control limits in samples TMW40S102015 (280-76166-1), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12) and TMW41102015 (280-76166-14). These anomalies are due to obvious matrix interferences; therefore, corrective action is deemed unnecessary. The associated data have been flagged "Q" in accordance with the DOD QSM.

The LCS/LCSD associated with prep batch 280-302159 exhibited a percent recovery outside the QC control limits for Benzidine. Benzidine has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. The associated data have been flagged "Q" in accordance with the DOD QSM.

MS/MSD analyses for prep batch 280-302159 were not requested.

The continuing calibration verification (CCV) associated with analytical batch 280-304769 recovered above the upper control limit for Benzidine. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data have been reported. The associated data have been flagged "Q" in accordance with the DOD QSM.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Gasoline Range Organics - 8015C

Sample TB-05-102015 (280-76166-8) was analyzed for gasoline range organics (GRO) in accordance with 8015C GRO. The sample was analyzed on 11/10/2015.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

MS/MSD analyses for analytical batch 280-303330 were not requested.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organochlorine Pesticides - 8081A

Samples MW02102015 (280-76166-3), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12) and TMW41102015 (280-76166-14) were analyzed for Organochlorine Pesticides (GC) in accordance with SW846 8081A. The samples were prepared on 11/02/2015 and analyzed on 11/07/2015.

TestAmerica Denver's practice for the reporting of dual column data in packages requiring forms and/or raw data is to report the surrogates from both columns, and the preferred result for any given target analyte from the analyst selected column. The preferred results for target analytes and surrogates are reported as PRIMARY on the Sample Datasheets.

Sample TMW39S102015 (280-76166-10) formed emulsion during the extraction procedure. The emulsions were broken up using a pour back on the first extraction.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

Elevated reporting limits are provided for sample TMW44102015 (280-76166-9) due to insufficient sample provided for method 8081A extraction.

The standards used for Toxaphene CCV 280-302889/36 and CCV 280-302889/50 expired at midnight on 11/06/2015. The analysis was set up on 11/06/2015 and the affected CCVs are well within control limits. The associated samples are ND for Toxaphene.

MS/MSD analyses for prep batch 280-302200 were not requested.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Explosives - 8330B

Samples TMW40S102015 (280-76166-1), TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) were analyzed for Nitroaromatics and Nitramines (HPLC) in accordance with SW846 8330B. The samples were prepared on 11/05/2015 and 11/13/2015 and analyzed on 11/07/2015, 11/09/2015, 11/10/2015, 11/17/2015 and 11/18/2015.

TestAmerica Denver's practice for the reporting of dual column data in packages requiring forms and/or raw data is to report the surrogates from both columns, and the preferred result for any given target analyte from the analyst selected column. The preferred results for target analytes and surrogates are reported as PRIMARY on the Sample Datasheets.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

Samples TMW40S102015 (280-76166-1), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11) and TMW21102015 (280-76166-15) required filtration to reduce matrix interferences.

Each sample is analyzed to achieve the lowest possible reporting limits within the constraints of the method. Due to analytes present above the calibration curve and matrix interference, sample TMW40S102015 (280-76166-1) had to be analyzed at a dilution. Surrogate recoveries could not be accurately calculated for the diluted analysis because the extract was diluted beyond the ability to reliably quantitate recoveries. The reporting limits and method detection limits have been adjusted relative to the dilutions required.

Surrogate 1,2-Dinitrobenzene was recovered below the QC control limits in sample TMW40S102015 (280-76166-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed. The associated data have been flagged "Q" in accordance with the DOD QSM.

The RPD between the primary and confirmation columns exceeded 40% for 1,3,5-Trinitrobenzene, 2,4,6-Trinitrotoluene, and HMX in sample TMW40S102015 (280-76166-1). The RPD between the primary and confirmation columns exceeded 40% for 2-Amino-4,6-dinitrotoluene in sample TMW22102015 (280-76166-5). The RPD between the primary and confirmation columns exceeded 40% for 2-Amino-4,6-dinitrotoluene, 4-Amino-2,6-dinitrotoluene and HMX in sample TMW44102015 (280-76166-9). The RPD between the primary and confirmation columns exceeded 40% for 2-Amino-4,6-dinitrotoluene, 4-Amino-2,6-dinitrotoluene and HMX in sample TMW44102015 (280-76166-9). The RPD between the primary and confirmation columns exceeded 40% for Nitrobenzene in sample TMW31S102015 (280-76166-11). The lower of the two values has been reported, as matrix interference is evident. The results in the analytical report have been flagged with "J" in accordance with the DOD QSM.

2-Amino-4,6-dinitrotoluene was detected in method blank MB 280-302678/1-A at a level less than the reporting limit on the confirmation column. The primary column result was ND; therefore, the method blank is ND. The value should be considered an estimate, and has been flagged "J" in accordance with the DOD QSM. If the associated sample reported a result above the MDL and/or RL, the result has been flagged "B".

4-Amino-2,6-dinitrotoluene was detected in method blank MB 280-302678/1-A at a level that was less than one half the reporting limit on the confirmation column; therefore, corrective action was deemed unnecessary. The value should be considered an estimate, and has been flagged "J" in accordance with the DOD QSM.

MS/MSD analyses for prep batch 280-302678 were not requested.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Perchlorate - 6860

Samples MW22S102015 (280-76166-2), TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) were analyzed for Perchlorate in accordance with 6860. The samples were analyzed on 11/21/2015 and 11/25/2015.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

Each sample is analyzed to achieve the lowest possible reporting limits within the constraints of the method. Due to analytes present above the calibration curve, samples TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12) and TMW41102015 (280-76166-14) had to be analyzed at dilutions. The reporting limits and method detection limits have been adjusted relative to the dilutions required.

MS/MSD analyses for analytical batches 280-305014 and 280-305631 were not requested.

The interference check standard (INF) associated with analytical batch 280-305014 was out of control, biased high, for Perchlorate. As the associated samples do not contain any detectable concentrations greater than the reporting limit, corrective action is deemed unnecessary.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Total Metals - 6010C

Samples TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) were analyzed for Total Metals (ICP) in accordance with 6010C. The samples were prepared on 11/04/2015 and analyzed on 11/18/2015 and 11/20/2015.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

Each sample is analyzed to achieve the lowest possible reporting limits within the constraints of the method. Due to high concentrations of target analytes, samples TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) had to be analyzed at dilutions. The reporting limits and method detection limits have been adjusted relative to the dilutions required.

The instrument blank for analytical batch 280-305005 contained Sodium greater than the LOD. Associated samples were not reanalyzed because they were either less than one half the reporting limit or ten times greater than the blank contamination.

MS/MSD analyses for prep batch 280-302230 were not requested.

The low Continuing Calibration Verification (CCVL) standard associated analytical batch 280-305005 exhibited a %Difference (%D) value out of range, biased high, for Sodium. The associated samples within this bracket all came from the high line and the amounts are ten times greater than the reporting limit for Sodium; therefore, the laboratory will not control on this standard and the data have been reported. Associated data have been flagged "Q" in accordance with the DOD QSM.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dissolved Metals - 6010C

Samples MW22S102015 (280-76166-2), TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) were analyzed for Dissolved Metals (ICP) in accordance with SW 846 6010C. The samples were prepared on 11/09/2015 and analyzed on 11/18/2015 and 11/19/2015.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

Each sample is analyzed to achieve the lowest possible reporting limits within the constraints of the method. Due to high concentrations of target analytes, samples MW22S102015 (280-76166-2), TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) had to be analyzed at dilutions. The reporting limits and method detection limits have been adjusted relative to the dilutions required.

The instrument blank for analytical batch 280-305005 contained Sodium greater than the LOD. Associated samples were not reanalyzed because they were either less than one half the reporting limit or ten times greater than the blank contamination.

Magnesium and Sodium were detected in method blank MB 280-302965/1-A at levels that were less than one half the reporting limits; therefore, corrective action was deemed unnecessary. The values should be considered estimates, and have been flagged "J" in accordance with the DOD QSM.

MS/MSD analyses for prep batch 280-302965 were not requested.

The low Continuing Calibration Verification (CCVL) standard associated analytical batch 280-305005 exhibited a %Difference (%D) value out of range, biased high, for Sodium. The associated samples within this bracket all came from the high line and the amounts are ten times greater than the reporting limit for Sodium; therefore, the laboratory will not control on this standard and the data have been reported. Associated data have been flagged "Q" in accordance with the DOD QSM.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Total Metals - 6020A

Samples TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) were analyzed for total metals (ICPMS) in accordance with SW846 6020A. The samples were prepared on 11/04/2015 and analyzed on 11/05/2015.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

MS/MSD analyses for prep batch 280-302231 were not requested.

The low level continuing calibration verification (CCVL) associated with analytical batch 280-302842 recovered above the upper control limit for Cadmium. As the associated samples do not contain any detectable concentrations greater than the reporting limit, corrective action is deemed unnecessary. Associated data have been flagged "Q" in accordance with the DOD QSM.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dissolved Metals - 6020A

Samples MW22S102015 (280-76166-2), TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) were analyzed for dissolved metals (ICPMS) in accordance with SW 846 6020A. The samples were prepared on 11/05/2015 and analyzed on 11/10/2015, 11/11/2015 and 12/11/2015.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

MS/MSD analyses for prep batch 280-302621 were not requested.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Total Mercury - 7470A

Samples TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) were analyzed for mercury in accordance with SW 846 7470A. The samples were prepared and analyzed on 11/16/2015.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

MS/MSD analyses for prep batch 280-303833 were not requested.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dissolved Mercury - 7470A

Samples MW22S102015 (280-76166-2), TMW22102015 (280-76166-5), TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) were analyzed for dissolved mercury in accordance with SW 846 7470A. The samples were prepared and analyzed on 11/11/2015.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

MS/MSD analyses for prep batch 280-302912 were not requested.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Nitrate & Nitrite - 9056

Samples TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW31S102015 (280-76166-11), TMW30102015 (280-76166-12), TMW18102015 (280-76166-13), TMW41102015 (280-76166-14) and TMW21102015 (280-76166-15) were analyzed for anions by ion chromatography in accordance with SW 846 9056. The samples were analyzed on 10/30/2015.

Reporting limits and method detection limits have been adjusted accordingly for the initial volumes extracted.

Each sample is analyzed to achieve the lowest possible reporting limits within the constraints of the method. Due to high concentrations of target analytes and/or matrix interference, samples TMW46102015 (280-76166-6), TMW44102015 (280-76166-9), TMW39S102015 (280-76166-10), TMW30102015 (280-76166-12) and TMW41102015 (280-76166-14) had to be analyzed at dilutions. The reporting limits and method detection limits have been adjusted relative to the dilutions required.

MS/MSD analyses for analytical batch 280-301856 were not requested.

No other analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Data Review Summary

Lab Reporting Batch ID: 280-76166-1 EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Validation Area	Note
Technical Holding Times	A
Temperature	А
Initial Calibration	N
Continuing Calibration/Initial Calibration Verification	Ν
Method Blanks	SR
Surrogate/Tracer Spikes	SR
Matrix Spike/Matrix Spike Duplicates	N
Laboratory Duplicates	N
Laboratory Replicates	N
Laboratory Control Samples	SR
Compound Quantitation	SR
Field Duplicates	N
Field Triplicates	N
Field Blanks	A

A = Acceptable, N = Not provided/applicable, SR = See report

The contents of this report reflect findings made by ADR during Automated Data Review, manual applied qualifiers are not considered. Please refer to the Overall Qualifier Summary report for manual qualifiers.

1/8/2016 10:54:50 AM

ADR version 1.9.0.325 (Licensed For Use On USACE Projects Only)

Page 1 of 1

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-76166-1 EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

<i>Method:</i> 8270D <i>Matrix:</i> AQ							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
LCSD 280-302159/3-A (TMW18102015 TMW22102015 TMW30102015 TMW315102015 TMW39S102015 TMW40S102015 TMW40S102015 TMW41102015 TMW44102015 TMW46102015)	BENZIDINE	-	26	27-150	-	BENZIDINE	J (all detects) UJ (all non-detects)

History of Manual Changes to Automated Data Review Qualifiers

Changed by: Doug Scott

Analyte	Method	Analysis Type	Result	Unit	Reason Code	Original Value	New Value	Edit Time	
Field Sample ID: TMW22102015									
2-AMINO-4,6-DINITROTOLUENE Reason for change: >40% RPI	8330B Confirmation	RES	0.22	ug/L	Professional Judgment		J	1/8/2016	10:51
Field Sample ID: TMW31S102015									
NITROBENZENE Reason for change: >40% RPD	8330B Confirmation	RE2	0.16	ug/L	Professional Judgment		J	1/8/2016	10:52
Field Sample ID: TMW40S102015									
1,3,5-TRINITROBENZENE Reason for change: >40% RPI	8330B Confirmation	RE2	2.2	ug/L	Professional Judgment		J	1/8/2016	10:50
2,4,6-TRINITROTOLUENE Reason for change: >40% RPI	8330B Confirmation	RE2	0.081	ug/L	Professional Judgment		J	1/8/2016	10:50
HEXAHYDRO-1,3,5-TRINITRO-1,3,5- Reason for change: Diluted out	8330B	DL	1000	ug/L	Surrogate/Tracer Recovery Low	J		1/8/2016	10:11
Octahydro-1,3,5,7-tetranitro-1,3,5,7- Reason for change: >40% RPI	8330B Confirmation	RES	14	ug/L	Professional Judgment		J	1/8/2016	10:51
Field Sample ID: TMW44102015									
2-AMINO-4,6-DINITROTOLUENE Reason for change: >40% RPI	8330B O Confirmation	RES	0.98	ug/L	Professional Judgment		J	1/8/2016	10:52

1/8/2016 10:53:15 AM

Analyte	Method	Analysis Type	Result	Unit	Reason Code	Original Value	New Value	Edit Time	
Field Sample ID: TMW44102015									
4-AMINO-2,6-DINITROTOLUENE Reason for change: >40% RPD	8330B Confirmation	RES	0.49	ug/L	Professional Judgment		J	1/8/2016	10:52
Octahydro-1,3,5,7-tetranitro-1,3,5,7- Reason for change: >40% RPD	8330B Confirmation	RES	2.5	ug/L	Professional Judgment		J	1/8/2016	10:52

Method Blank Outlier Report

Lab Reporting Batch ID: 280-76166-1 EDD Filename: Prep280-76166-1

Laboratory: TA DEN

eQAPP Name: FtWingate_Primary_120405

Method: Matrix:	6010C AQ				
Method Blan Sample ID	ık	Analysis Date	Analyte	Result	Associated Samples
MB 280-302965/1	-A	11/18/2015 11:32:00 PM	MAGNESIUM SODIUM	11.0 ug/L 514 ug/L	MW22S102015 TMW18102015 TMW21102015 TMW22102015 TMW30102015 TMW31S102015 TMW39S102015 TMW41102015 TMW44102015 TMW46102015

Project Name and Number: 102012 - USACE Project: FWDA 102012 GW 1/8/2016 10:18:36 AM ADR version 1.9.0.325

Lab Reporting Batch ID: 280-76166-1 EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method: 6010C

Matrix. AQ							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
MW22S102015	ALUMINUM IRON POTASSIUM	L L J	120 77 1300	300 100 3000	LOQ LOQ LOQ	ug/L ug/L ug/L	J (all detects)
TMW18102015	ALUMINUM POTASSIUM	J J	210 970	300 3000	LOQ LOQ	ug/L ug/L	J (all detects)
TMW21102015	POTASSIUM	J	1200	3000	LOQ	ug/L	J (all detects)
TMW22102015	POTASSIUM	J	1000	3000	LOQ	ug/L	J (all detects)
TMW30102015	POTASSIUM	J	1000	3000	LOQ	ug/L	J (all detects)
TMW31S102015	IRON POTASSIUM	J J	27 800	100 3000	LOQ LOQ	ug/L ug/L	J (all detects)
TMW39S102015	POTASSIUM	J	1200	3000	LOQ	ug/L	J (all detects)
TMW41102015	POTASSIUM	J	1100	3000	LOQ	ug/L	J (all detects)
TMW44102015	POTASSIUM	J	800	3000	LOQ	ug/L	J (all detects)
TMW46102015	POTASSIUM	J	830	3000	LOQ	ug/L	J (all detects)

Method: 6020A

Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
MW22S102015		J	0.76	6.0 E 0	LOQ	ug/L	
		J	0.59	5.0		ug/L	
	LEAD	J	1.7	3.0	LOQ	ug/L ug/L	
	NICKEL	Ĵ	1.8	3.0	LOQ	ug/L	J (all detects)
	SILVER	J	0.10	5.0	LOQ	ug/L	. ,
	THALLIUM	J	0.084	1.0	LOQ	ug/L	
	VANADIUM	J	2.1	6.0	LOQ	ug/L	
	ZINC	J	8.3	20	LOQ	ug/L	
TMW18102015	ARSENIC	J	0.61	5.0	LOQ	ug/L	
	COPPER	J	1.6	2.0	LOQ	ug/L	
	LEAD	J	0.43	3.0	LOQ	ug/L	(all detects)
	NICKEL	J	0.35	3.0	LOQ	ug/L	
	VANADIUM	J	3.9	6.0	LOQ	ug/L	
	ZINC	J	2.8	20	LOQ	ug/L	
TMW21102015	CADMIUM	JQ	0.28	1.0	LOQ	ug/L	
	SELENIUM	J	2.7	5.0	LOQ	ug/L	L (all dotocts)
	SILVER	J	0.36	5.0	LOQ	ug/L	J (an delects)
	THALLIUM	J	0.31	1.0	LOQ	ug/L	

Project Name and Number: 102012 - USACE Project: FWDA 102012 GW

1/8/2016 10:19:00 AM

ADR version 1.9.0.325

Lab Reporting Batch ID: 280-76166-1 EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method: 6020A *Matrix:* AQ

		Lab		Departing	DI		
SampleID	Analyte	Qual	Result	Limit	п Туре	Units	Flag
TMW22102015	ANTIMONY ARSENIC BERYLLIUM CHROMIUM COBALT COPPER LEAD NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC		0.70 0.97 0.22 0.53 0.11 1.3 0.97 1.4 2.8 0.12 0.099 5.1	6.0 5.0 1.0 1.0 2.0 3.0 5.0 5.0 1.0 6.0 20	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW30102015	ARSENIC CHROMIUM COBALT COPPER LEAD NICKEL SILVER ZINC	, , , , , , , , , , , , , , , , , , , ,	0.87 1.6 0.10 1.4 0.52 0.64 0.23 5.0	5.0 10 1.0 2.0 3.0 3.0 5.0 20	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW31S102015	ARSENIC BERYLLIUM CHROMIUM COPPER LEAD NICKEL VANADIUM ZINC		0.60 0.17 1.5 1.6 2.9 0.36 2.1 11	5.0 1.0 10 2.0 3.0 3.0 6.0 20	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW39S102015	ARSENIC BERYLLIUM CHROMIUM COPPER MANGANESE NICKEL SILVER THALLIUM VANADIUM ZINC		0.36 0.47 1.8 1.2 2.1 0.34 0.091 0.069 3.4 18	5.0 1.0 2.0 3.5 3.0 5.0 1.0 6.0 20	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW41102015	ARSENIC CHROMIUM COBALT COPPER LEAD MANGANESE NICKEL SELENIUM SILVER ZINC		0.73 1.4 0.14 0.74 1.8 0.34 0.49 1.3 0.054 5.4	5.0 10 2.0 3.0 3.5 3.0 5.0 5.0 20	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)

Project Name and Number: 102012 - USACE Project: FWDA 102012 GW

1/8/2016 10:19:00 AM

ADR version 1.9.0.325

Lab Reporting Batch ID: 280-76166-1 EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method: 6020A Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
TMW44102015	ARSENIC BERYLLIUM CHROMIUM COPPER LEAD NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC		1.1 0.24 3.0 1.3 1.8 2.8 2.0 0.042 0.050 3.8 10	5.0 1.0 2.0 3.0 5.0 5.0 1.0 6.0 20	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW46102015	ARSENIC BERYLLIUM CHROMIUM COPPER MANGANESE NICKEL SILVER THALLIUM VANADIUM ZINC		0.36 0.74 5.5 1.2 0.71 0.37 0.042 0.11 2.4 18	5.0 1.0 2.0 3.5 3.0 5.0 1.0 6.0 20	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
Method: 6860 Matrix: AQ							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
TMW22102015	PERCHLORATE	J	0.018	0.050	LOQ	ug/L	J (all detects)
TMW44102015	PERCHLORATE	J	0.012	0.050	LOQ	ug/L	J (all detects)
Method: 7470A							
Matrix: AQ							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
TMW21102015	MERCURY	J	0.060	0.20	LOQ	ug/L	J (all detects)
TMW30102015	MERCURY	J	0.030	0.20	LOQ	ug/L	J (all detects)
TMW44102015	MERCURY	J	0.027	0.20	LOQ	ug/L	J (all detects)
TMW46102015	MERCURY	J	0.052	0.20	LOQ	ug/L	J (all detects)
Method: 8260B Matrix: AQ							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
TMW18102015	TOLUENE		0.18	1.0	100		

1/8/2016 10:19:00 AM

Lab Reporting Batch ID: 280-76166-1 EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method: 8260B							
Matrix: AQ							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
Method: 8270D							
Matrix: AQ							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
TMW18102015	ACETOPHENONE BIS(2-ETHYLHEXYL) PHTHALATE	J J	0.71 6.2	10 10	LOQ LOQ	ug/L ug/L	J (all detects)
TMW22102015	2,4-DINITROPHENOL BENZOIC ACID	J J	25 12	83 83	LOQ LOQ	ug/L ug/L	J (all detects)
TMW40S102015	2,4-DINITROPHENOL	J	19	84	LOQ	ug/L	J (all detects)
TMW41102015	BENZOIC ACID	J	12	82	LOQ	ug/L	J (all detects)
TMW44102015	BENZOIC ACID	J	11	76	LOQ	ug/L	J (all detects)
Method: 8330B Matrix: AQ							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
TMW31S102015	NITROBENZENE	J	0.16	0.43	LOQ	ug/L	J (all detects)
TMW40S102015	2,4,6-TRINITROTOLUENE	J	0.081	0.43	LOQ	ug/L	J (all detects)

Surrogate Outlier Report

Lab Reporting Batch ID: 280-76166-1

Laboratory: TA DEN

EDD Filename: Prep280-76166-1

eQAPP Name: FtWingate_Primary_120405

<i>Method:</i> 8270E <i>Matrix:</i> AQ)				
Sample ID (Analysis Type)	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
TMW30102015	Terphenyl-d14	35	50.00-135.00	No Affected Compounds	
TMW31S102015	Terphenyl-d14	26	50.00-135.00	No Affected Compounds	
TMW39S102015	Terphenyl-d14	30	50.00-135.00	No Affected Compounds	
TMW40S102015	Terphenyl-d14	14	50.00-135.00	No Affected Compounds	
TMW41102015	Terphenyl-d14	36	50.00-135.00	No Affected Compounds	
TMW44102015	Terphenyl-d14	23	50.00-135.00	No Affected Compounds	
<i>Method:</i> 8330E <i>Matrix:</i> AQ	3				
Sample ID (Analysis Type)	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
TMW40S102015 (DL)	1,2-DINITROBENZENE	0	75.00-118.00	All Target Analytes	J(all detects) R(all non-detects)
TMW40S102015 (RE2)	1,2-DINITROBENZENE	6615	75.00-118.00	All Target Analytes	J(all detects)
TMW40S102015	1,2-DINITROBENZENE	0	75.00-118.00	All Target Analytes	J(all detects) R(all non-detects)

Field QC Assignments and Associated Samples

EDD File Name: 280-76166-1 eQapp Name: FtWingate_P

FtWingate_Primary_120405

	Associated Samples	Sample Collection Date
Field OC TB-04-102015		
	MW02102015	10/29/2015 9:50:00 AM
	MW22S102015	10/29/2015 9:11:00 AM
	TMW18102015	10/29/2015 1:20:00 PM
	TMW21102015	10/29/2015 1:05:00 PM
	TMW22102015	10/29/2015 11:59:00 AM
	TMW30102015	10/29/2015 12:05:00 PM
	TMW31S102015	10/29/2015 11:00:00 AM
	TMW39S102015	10/29/2015 10:10:00 AM
	TMW40S102015	10/29/2015 8:21:00 AM
	TMW41102015	10/29/2015 10:42:00 AM
	TMW44102015	10/29/2015 9:10:00 AM
	TMW46102015	10/29/2015 1:00:00 PM
Field QC TB-05-102015		
ac type. 15		
	MW02102015	10/29/2015 9:50:00 AM
	MW22S102015	10/29/2015 9:11:00 AM
	TMW18102015	10/29/2015 1:20:00 PM
	TMW21102015	10/29/2015 1:05:00 PM
	TMW22102015	10/29/2015 11:59:00 AM
	TMW30102015	10/29/2015 12:05:00 PM
	TMW31S102015	10/29/2015 11:00:00 AM
	TMW39S102015	10/29/2015 10:10:00 AM
	TMW40S102015	10/29/2015 8:21:00 AM
	TMW41102015	10/29/2015 10:42:00 AM
	TMW44102015	10/29/2015 9:10:00 AM
	TMW46102015	10/29/2015 1:00:00 PM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Categor	y: METALS									
Method:	6010C			Ма	atrix:	AQ			_	
Sample ID:MW22S1	02015	Collec	10/29/ ted:AM	2015 9:1	1:00 A	nalysis 1	Type: RE3	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM		120	J	70	LOD	300	LOQ	ug/L	J	RI
Sample ID:MW22S1	02015	Collec	10/29/ ted: AM	2015 9:1	1:00 A	nalysis 1	Type:RES	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON		77	J	85	LOD	100	LOQ	ug/L	J	RI
POTASSIUM		1300	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW181	02015	Collec	10/29/ ted:PM	2015 1:2	0:00 A	nalysis 1	Type:RES	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM		970	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW181	02015	Collec	10/29/ ted:PM	2015 1:2	0:00 A	nalysis 1	Type: RES	б/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM		210	J	70	LOD	300	LOQ	ug/L	J	RI
Sample ID:TMW211	02015	Collec	10/29/ ted:PM	2015 1:0	5:00 A	nalysis 1	Type:RES	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM		1200	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW221	02015	Collec	10/29/ ted:AM	2015 11:	59:00 A	nalysis 1	Type:RES	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM		1000	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW221	02015	Collec	10/29/ ted:AM;	2015 11:	59:00 A	nalysis 1	Type:RES	/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM		1600	J	940	LOD	3000	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Category: METALS									
Method: 6010C			Ма	atrix:	AQ				
Sample ID:TMW30102015	Collec	10/29/ ted:PM	2015 12:	05:00 A	nalysis 1	<i>ype:</i> RES	/DIS		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	1000	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW30102015	Collec	10/29/ ted:PM	2015 12:	05:00 A	nalysis 1	<i>Type:</i> RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	1100	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW31S102015	Collec	10/29/ ted:AM	2015 11:	00:00 A	nalysis 1	Type: RES	/DIS		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	27	J	85	LOD	100	LOQ	ug/L	J	RI
POTASSIUM	800	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW31S102015	Collec	10/29/ ted: AM	2015 11:	00:00 A	nalysis 1	<i>ype:</i> RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	1400	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW39S102015	Collec	10/29/ ted: AM	2015 10:	10:00 A	nalysis 1	Type: RES	/DIS		Dilution: 1
Analyte POTASSIUM	Lab Result	Lab Qual	DL 940	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Comple (D:TNW/205402015		10/29/	2015 10:	10:00				•	Dilution 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	2600	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW41102015	Collec	10/29/ ted: AM	2015 10:	42:00 A	nalysis 1	<i>Type:</i> RES	/DIS		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	1100	J	940	LOD	3000	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Category: METALS									
Method: 6010C			Ма	ntrix:	AQ				
Sample ID:TMW41102015	Collec	10/29/ ted: AM	2015 10:	42:00 A	nalysis 1	Type: RES	лот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	1300	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW44102015	Collec	10/29/ ted: AM	2015 9:1	0:00 A	nalysis 1	<i>Type:</i> RES	JDIS		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	800	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW44102015	10/29/2015 9:10:00 Collected: AM Analysis Type: RES/TOT Dilution								Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	1700	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW46102015	Collec	10/29/ ted:PM	2015 1:0	0:00 A	nalysis 1	<i>Type:</i> RES	J/DIS		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	830	J	940	LOD	3000	LOQ	ug/L	J	RI
Sample ID:TMW46102015	Collec	10/29/ ted:PM	2015 1:0	0:00 A	nalysis 1	<i>Type:</i> RES	б/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	2500	J	940	LOD	3000	LOQ	ug/L	J	RI

Method Category: METALS

Method:	6020A	<i>Matrix:</i> AQ										
Sample ID:MW22	S102015	Collec	10/29/ ted:AM	2015 9:1	1:00 A	nalysis 1	<i>ype:</i> RES	/DIS		Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ANTIMONY		0.76	J	1.0	LOD	6.0	LOQ	ug/L	J	RI		
ARSENIC		0.59	J	1.0	LOD	5.0	LOQ	ug/L	J	RI		
COBALT		0.36	J	0.20	LOD	1.0	LOQ	ug/L	J	RI		
LEAD		1.7	J	0.70	LOD	3.0	LOQ	ug/L	J	RI		
NICKEL		1.8	J	1.0	LOD	3.0	LOQ	ug/L	J	RI		
SILVER		0.10	J	0.10	LOD	5.0	LOQ	ug/L	J	RI		
THALLIUM		0.084	J	0.20	LOD	1.0	LOQ	ug/L	J	RI		

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Category: METALS										
Method: 6020A			Ма	atrix:	AQ					
Sample ID:MW22S102015	Collec	10/29/ c ted :AM	/2015 9:1	1:00 A	nalysis	Type:RES	/DIS	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
VANADIUM	2.1	J	2.0	LOD	6.0	LOQ	ug/L	J	RI	
ZINC	8.3	J	8.0	LOD	20	LOQ	ug/L	J	RI	
Sample ID:TMW18102015	Collec	10/29/ cted:PM	2015 1:2	0:00 A	nalysis	Type:RES	/DIS		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	0.61	J	1.0	LOD	5.0	LOQ	ug/L	J	RI	
Sample ID:TMW18102015	Collec	10/29/ cted:PM	2015 1:2	0:00 A	nalysis	Type:RES	лот/		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
COPPER	1.6	J	1.8	LOD	2.0	LOQ	ug/L	J	RI	
LEAD	0.43	J	0.70	LOD	3.0	LOQ	ug/L	J	RI	
NICKEL	0.35	J	1.0	LOD	3.0	LOQ	ug/L	J	RI	
VANADIUM	3.9	J	2.0	LOD	6.0	LOQ	ug/L	J	RI	
ZINC	2.8	J	8.0	LOD	20	LOQ	ug/L	J	RI	
Sample ID:TMW21102015	Collec	10/29/ cted:PM	2015 1:0	5:00 A	nalysis	Type:RE2	/тот		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CADMIUM	0.28	JQ	1.0	LOD	1.0	LOQ	ug/L	J	RI	
Sample ID:TMW21102015	Collec	10/29/ cted:PM	2015 1:0	5:00 A	nalysis	Type: RES	/DIS		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CADMIUM	0.36	J	1.0	LOD	1.0	LOQ	ug/L	J	RI	
SELENIUM	2.7	J	2.0	LOD	5.0	LOQ	ug/L	J	RI	
SILVER	0.36	J	0.10	LOD	5.0	LOQ	ug/L	J	RI	
THALLIUM	0.31	J	0.20	LOD	1.0	LOQ	ug/L	J	RI	
Sample ID:TMW21102015	Collec	10/29/ cted:PM	2015 1:0	5:00 A	nalysis	Type: RES	/тот	_	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	2.8	J	2.0	LOD	5.0	LOQ	ug/L	J	RI	
SILVER	0.36	J	0.10	LOD	5.0	LOQ	ug/L	J	RI	

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Category: METALS									
Method: 6020A			Ма	atrix:	AQ				
Sample (D.T.M.M.21102015	Colleg	10/29/	2015 1:0	5:00	nalvojo I		лот		Dilution: 1
	Conec			A	naiysis i	ype. KES		Data	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
THALLIUM	0.25	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
Sample ID:TMW22102015	Collec	10/29/	2015 11:	59:00 A	nalvsis 1	vpe: RE2	/DIS		Dilution: 1
						<i></i>		Data	
Analysis	Lab	Lab		DL		RL	11:40	Review	Reason
	Result	Quai	DL	Туре	RL	Туре	Units	Quai	Code
COPPER	1.3	J 10/29/	1.8 2015 11·	LOD	2.0	LOQ	ug/L	J	RI
Sample ID:TMW22102015	Collec	ted: AM	2013 11.	A	nalysis 1	ype:RES	/DIS		Dilution: 1
	Lab	Lab				ום		Data	Peacon
Analyte	Result	Qual	DL	Type	RL	Type	Units	Qual	Code
ARSENIC	0.97	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
CHROMIUM	0.53	J	1.8	LOD	10	LOQ	ug/L	J	RI
COBALT	0.11	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
NICKEL	1.4	J	1.0	LOD	3.0	LOQ	ug/L	J	RI
SELENIUM	2.8	J	2.0	LOD	5.0	LOQ	ug/L	J	RI
VANADIUM	5.1	J	2.0	LOD	6.0	LOQ	ug/L	J	RI
Sample ID:TMW22102015	Collec	10/29/ ted:AM	2015 11:	59:00 A	nalysis 1	vpe: RES	/тот		Dilution: 1
								Data	
Analyte	Lab Result	Lab Qual	וח	DL Type	RI	RL Type	Units	Review Qual	Reason Code
ANTIMONY	0.70		10		6.0	100			RI
ARSENIC	1.2	J	1.0	LOD	5.0	LOQ	ua/L	J	RI
BERYLLIUM	0.22	J	0.30	LOD	1.0	LOQ	ug/L	J	RI
CHROMIUM	2.8	J	1.8	LOD	10	LOQ	ug/L	J	RI
COBALT	0.72	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
COPPER	1.3	J	1.8	LOD	2.0	LOQ	ug/L	J	RI
LEAD	0.97	J	0.70	LOD	3.0	LOQ	ug/L	J	RI
NICKEL	2.7	J	1.0	LOD	3.0	LOQ	ug/L	J	RI
SELENIUM	2.9	J	2.0	LOD	5.0	LOQ	ug/L	J	RI
SILVER	0.12	J	0.10	LOD	5.0	LOQ	ug/L	J	RI
THALLIUM	0.099	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
ZINC	14	J	8.0	LOD	20	LOQ	ug/L	J	RI

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

Laboratory: TA DEN

EDD Filename: Prep280-76166-1 eQAPP Name: FtWingate_Primary_120405										
Method Category:	METALS									
Method:	6020A			Ма	atrix:	AQ				
Sample ID:TMW301020	015	Collec	10/29/ cted:рм	/2015 12:	05:00 A	nalvsis	Type: RES	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC		0.87	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
COBALT		0.10	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
NICKEL		0.64	J	1.0	LOD	3.0	LOQ	ug/L	J	RI
ZINC		5.0	J	8.0	LOD	20	LOQ	ug/L	J	RI
Sample ID:TMW301020)15	Collec	10/29/	2015 12:	05:00 A	nalvsis i	Type:RES	б/тот	•	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC		0.79	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
CHROMIUM		1.6	J	1.8	LOD	10	LOQ	ug/L	J	RI
COBALT		0.21	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
COPPER		1.4	J	1.8	LOD	2.0	LOQ	ug/L	J	RI
LEAD		0.52	J	0.70	LOD	3.0	LOQ	ug/L	J	RI
NICKEL		0.92	J	1.0	LOD	3.0	LOQ	ug/L	J	RI
SILVER		0.23	J	0.10	LOD	5.0	LOQ	ug/L	J	RI
ZINC		9.6	J	8.0	LOD	20	LOQ	ug/L	J	RI
Sample ID:TMW31S102	2015	Collec	10/29/ cted: AM	2015 11:	00:00 A	nalysis	Type:RE2	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COPPER		1.6	J	1.8	LOD	2.0	LOQ	ug/L	J	RI
Sample ID:TMW31S102	2015	Collec	10/29/ c ted: AM	2015 11:	00:00 A	nalysis	Type: RES	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHROMIUM		1.5	J	1.8	LOD	10	LOQ	ug/L	J	RI
NICKEL		0.36	J	1.0	LOD	3.0	LOQ	ug/L	J	RI
VANADIUM		2.1	J	2.0	LOD	6.0	LOQ	ug/L	J	RI
Sample ID:TMW31S102	2015	Collec	10/29/ cted: AM	2015 11:	00:00 A	nalysis	Type: RES	б/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC		0.60	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
BERYLLIUM		0.17	J	0.30	LOD	1.0	LOQ	ug/L	J	RI
CHROMIUM		4.6	J	1.8	LOD	10	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Categor	y: METALS									
Method:	6020A			Ма	atrix:	AQ				
Sample ID:TMW31	S102015	Collec	10/29/ cted: AM	2015 11:	00:00 A	nalysis 1	ype :RES	/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COPPER		1.2	J	1.8	LOD	2.0	LOQ	ug/L	J	RI
LEAD		2.9	J	0.70	LOD	3.0	LOQ	ug/L	J	RI
ZINC		11	J	8.0	LOD	20	LOQ	ug/L	J	RI
Sample ID/TMW399	\$102015	Collec	10/29/	2015 10:	10:00 🗛	nalvsis 1	vpe·RF2	/DIS		Dilution 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COPPER		1.2	J	1.8	LOD	2.0	LOQ	ug/L	J	RI
Sample ID:TMW39	S102015	Collec	10/29/ cted: AM	2015 10:	10:00 A	nalysis 1	vpe:RES	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC		0.36	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
CHROMIUM		1.8	J	1.8	LOD	10	LOQ	ug/L	J	RI
MANGANESE		2.1	J	0.95	LOD	3.5	LOQ	ug/L	J	RI
NICKEL		0.34	J	1.0	LOD	3.0	LOQ	ug/L	J	RI
VANADIUM		3.4	J	2.0	LOD	6.0	LOQ	ug/L	J	RI
Sample ID:TMW39	5102015	Collec	10/29/	2015 10:	10:00 A	nalvsis 1	Type:RES	лот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC		1.2	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
BERYLLIUM		0.47	J	0.30	LOD	1.0	LOQ	ug/L	J	RI
CHROMIUM		8.2	J	1.8	LOD	10	LOQ	ug/L	J	RI
SILVER		0.091	J	0.10	LOD	5.0	LOQ	ug/L	J	RI
THALLIUM		0.069	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
ZINC		18	J	8.0	LOD	20	LOQ	ug/L	J	RI
Sample ID:TMW411	102015	Collec	10/29/ cted: AM	2015 10:	42:00 A	nalysis 1	<i>ype:</i> RE2	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COPPER		0.74	J	1.8	LOD	2.0	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

SILVER

Data Qualifier Summary

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate Primary 120405

	•								• -	
Method Category:	METALS									
Method:	6020A			Ма	ntrix:	AQ				
Sample ID:TMW411020)15	Collec	10/29/ ted:AM	2015 10:	42:00 A	nalysis 1	Type:RES	/DIS		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC		0.73	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
CHROMIUM		1.4	J	1.8	LOD	10	LOQ	ug/L	J	RI
MANGANESE		0.34	J	0.95	LOD	3.5	LOQ	ug/L	J	RI
SELENIUM		1.3	J	2.0	LOD	5.0	LOQ	ug/L	J	RI
SILVER		0.054	J	0.10	LOD	5.0	LOQ	ug/L	J	RI
Sample ID:TMW411020	015	Collec	10/29/ ted:AM	2015 10:	42:00 A	nalysis 1	Type:RES	/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC		0.53	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
CHROMIUM		1.8	J	1.8	LOD	10	LOQ	ug/L	J	RI
COBALT		0.14	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
LEAD		1.8	J	0.70	LOD	3.0	LOQ	ug/L	J	RI
NICKEL		0.49	J	1.0	LOD	3.0	LOQ	ug/L	J	RI
SELENIUM		1.4	J	2.0	LOD	5.0	LOQ	ug/L	J	RI

ZINC	5.4	J	8.0	LOD	20	LOQ	ug/L	J	RI
Sample ID:TMW44102015	Collec	10/29/ cted:AM	/2015 9:1	0:00 A	nalysis	<i>Type:</i> RE3	/DIS		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COPPER	1.3	J	1.8	LOD	2.0	LOQ	ug/L	J	RI
10/29/2015 9:10:00							•	Dilution: 1	

J

0.070

0.10

LOD

5.0

LOQ

ug/L

J

RI

Sample ID:1 MVV44102015	Collec	cted: AM		A	naiysis i	ype:RE5	/015		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	1.1	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
SELENIUM	2.0	J	2.0	LOD	5.0	LOQ	ug/L	J	RI
VANADIUM	3.8	J	2.0	LOD	6.0	LOQ	ug/L	J	RI
		40/00/	004504	~ ~~					

Sample ID:TMW44102015	Collected: AM			0:00 A	nalysis 1	ype:RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	1.5	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
BERYLLIUM	0.24	J	0.30	LOD	1.0	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Category:	METALS									
Method:	6020A			Ма	trix:	AQ				
Semple (DTMW44402)	015	Callag	10/29/	2015 9:1	0:00	nalvojo T		лот		Dilution: 1
	015	Conec	ied: AM		A	naiysis i	урексэ		Data	
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
CHROMIUM		3.0	J	1.8	LOD	10	LOQ	ug/L	J	RI
COPPER		1.5	J	1.8	LOD	2.0	LOQ	ug/L	J	RI
LEAD		1.8	J	0.70	LOD	3.0	LOQ	ug/L	J	RI
NICKEL		2.8	J	1.0	LOD	3.0	LOQ	ug/L	J	RI
SELENIUM		2.0	J	2.0	LOD	5.0	LOQ	ug/L	J	RI
SILVER		0.042	J	0.10	LOD	5.0	LOQ	ug/L	J	RI
THALLIUM		0.050	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
ZINC		10	J	8.0	LOD	20	LOQ	ug/L	J	RI
Sample ID:TMW461020	015	Collec	10/29/ ted:PM	2015 1:0	0:00 A	nalysis 1	vpe:RE2	/DIS		Dilution: 1
									Data	
Analyta		Lab	Lab	DI	DL	וח	RL Turna	Unito	Review	Reason
Analyte		Result	Quai	DL	Туре	RL	Туре	Units	Quai	Code
COPPER	1.2	J 10/20/	1.8		2.0	LOQ	ug/L	J	RI	
Sample ID:TMW461020	015	Collec	ted:PM	2013 1.0	0.00 A	nalysis 1	ype:RES	/DIS		Dilution: 1
		1	1.4						Data	D
Analyte		Result	Qual	DL	DL Type	RL	RL Type	Units	Qual	Code
ARSENIC		0.36	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
MANGANESE		0.71	J	0.95	LOD	3.5	LOQ	ug/L	J	RI
NICKEL		0.37	J	1.0	LOD	3.0	LOQ	ug/L	J	RI
VANADIUM		2.4	J	2.0	LOD	6.0	LOQ	ug/L	J	RI
Sample ID:TMW461020	015	Collec	10/29/	2015 1:0	0:00	nalvsis T	wne [,] RES			Dilution: 1
		Conec			~	narysis i	ype. REO	/101	Data	
		Lab	Lab		DL		RL		Review	Reason
Analyte		Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
ARSENIC		1.9	J	1.0	LOD	5.0	LOQ	ug/L	J	RI
BERYLLIUM		0.74	J	0.30	LOD	1.0	LOQ	ug/L	J	RI
CHROMIUM		5.5	J	1.8	LOD	10	LOQ	ug/L	J	RI
SILVER		0.042	J	0.10	LOD	5.0	LOQ	ug/L	J	RI
THALLIUM		0.11	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
ZINC		18	J	8.0	LOD	20	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Category: METALS										
Method: 7470A			Ма	trix:	AQ		_			
Sample ID:TMW21102015	Collec	10/29/ ted:PM	2015 1:0	5:00 A	nalysis 1	ype:RES	/тот	1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MERCURY	0.060	J	0.080	LOD	0.20	LOQ	ug/L	J	RI	
Sample ID:TMW30102015	Collec	10/29/	2015 12:	05:00 A	nalvsis T	vpe:RES	лот		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MERCURY	0.030	J	0.080	LOD	0.20	LOQ	ug/L	J	RI	
Sample ID:TMW44102015	Collec	10/29/	2015 9:1	0:00 A	nalysis 1	vpe:RES	лот		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MERCURY	0.027	J	0.080	LOD	0.20	LOQ	ug/L	J	RI	
Sample ID:TMW46102015	Collec	10/29/ ted:PM	2015 1:0	0:00 A	nalysis 1	' <i>ype:</i> RES	лот		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MERCURY	0.052	J	0.080	LOD	0.20	LOQ	ug/L	J	RI	
Method Category: SVOA										

Method: 6860			Ма	trix:	AQ					
Sample ID:TMW22102015	Collec	10/29/2015 11:59:00 Collected: AM Analysis Type: RES							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
PERCHLORATE	0.018	J	0.010	LOD	0.050	LOQ	ug/L	J	RI	
Sample ID:TMW44102015	Collec	10/29/ ted: AM	2015 9:1	0:00 A	nalysis 1	ype:RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
PERCHLORATE	0.012	J	0.010	LOD	0.050	LOQ	ug/L	J	RI	

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Category: SVOA									
Method: 8270D			Ма	trix:	AQ				
Sample ID:TMW19102015	Collor	10/29/	2015 1:2	0:00	nalveis 1				Dilution: 1
	Conec	lea. PM		A	naiysis i	ype. KES	-DAJE/N	Data	
A we had a	Lab	Lab		DL		RL	11	Review	Reason
Analyte	Result	Quai	DL	Туре	RL	Туре	Units	Quai	Code
ACETOPHENONE	0.71	J	5.0	LOD	10	LOQ	ug/L	J	RI
BENZIDINE	100	U	100	LOD	200	LOQ	ug/L	UJ	Lcs
BIS(2-ETHYLHEXYL) PHTHALATE	6.2 J 2.0 LOD 10 LOQ ug/L J							RI	
Sample ID:TMW22102015	Collec	ted: AM	2015 11:	59:00 A	nalysis 1	ype:RES	-ACID		Dilution: 1
								Data	-
Analvte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Qual	Reason Code
2.4-DINITROPHENOL	25	J	31	LOD	83	LOQ	ua/L	J	RI
BENZOIC ACID	12	J	31	LOD	83	LOQ	ua/L	J	RI
	0-#	10/29/	2015 11:	59:00					Diluctions
Sample ID:I MW22102015	Collec	ted:AM		A	naiysis i	ype:RES	-BASE/N		Dilution: 1
	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
BENZIDINE	100	U	100	LOD	210	LOQ	ug/L	UJ	Lcs
Sample ID:TMW30102015	Collec	10/29/ ted:PM	2015 12:	05:00 A	nalysis 1	ype: RES	-BASE/N	EUTRAL	Dilution: 1
								Data	
Analyta	Lab	Lab	DI	DL	DI	RL	Unito	Review	Reason
	Result	Quai					Units	Quai	Code
BENZIDINE	100	10/29/	2015 11	00.00	210	LOQ	ug/L	UJ	LCS
Sample ID:TMW31S102015	Collec	ted: AM		A	nalysis 1	ype:RES	-BASE/N	EUTRAL	Dilution: 1
	Lab	Lab				DI		Data	Resser
Analyte	Result	Qual	DL	Type	RL	Type	Units	Qual	Code
BENZIDINE	97	UQ	97	LOD	190	LOQ	ug/L	UJ	Lcs
Sample (D:TMW39S102015	Collec	10/29/	2015 10:	10:00	nalvsis 1	wne RES			Dilution: 1
	Utilet				11419313 1	ype. REO		Data	
	Lab	Lab		DL		RL		Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
BENZIDINE	100	UQ	100	LOD	200	LOQ	ug/L	UJ	Lcs
Sample ID:TMW40S102015	Collec	10/29/ ted:AM	2015 8:2	1:00 A	nalysis 1	ype:RES	-ACID		Dilution: 1
								Data	
Analyte	Lab Result	Lab	וח		RI	RL Type	Unite	Review	Reason
	10	1	31		<u>8</u> 4				DI
	19	J	51	LOD	84		ug/L	J	KI

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Category: SVOA									
Method: 8270D			Ма	atrix:	AQ				
Sample ID:TMW40S102015	Collec	10/29/ ted: AM	2015 8:2	1:00 A	nalysis 1	ype:RES	-BASE/N	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZIDINE	100	UQ	100	LOD	210	LOQ	ug/L	UJ	Lcs
Sample ID:TMW41102015	Collec	10/29/ ted:AM	2015 10:	42:00 A	nalysis 1	ype:RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZOIC ACID	12	J	31	LOD	82	LOQ	ug/L	J	RI
Sample ID:TMW41102015	Collec	10/29/ ted: AM	2015 10:	42:00 A	nalysis 1	Type: RES	-BASE/N	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZIDINE	100	UQ	100	LOD	200	LOQ	ug/L	UJ	Lcs
Sample ID:TMW44102015	Collec	10/29/ ted:AM	2015 9:1	0:00 A	nalysis 1	ype:RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZOIC ACID	11	J	29	LOD	76	LOQ	ug/L	J	RI
Sample ID:TMW44102015	Collec	10/29/ ted:AM	2015 9:1	0:00 A	nalysis 1	ype:RES	-BASE/N	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZIDINE	95	UQ	95	LOD	190	LOQ	ug/L	UJ	Lcs
Sample ID:TMW46102015	10/29/2015 1:00:00 Collected:PM Analysis Type:RES-BASE/NEUTRAL Dilution: 1						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZIDINE	100	U	100	LOD	200	LOQ	ug/L	UJ	Lcs

Method Category:	SVOA											
Method:	8330B			Ма	atrix:	AQ						
Sample ID:TMW221020	10/29/201 WW22102015 Collected: AM			2015 11:	015 11:59:00 Analysis Type: RES					Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2-AMINO-4,6-DINITROT	OLUENE	0.22	J	0.13	LOD	0.22	LOQ	ug/L	J	ProfJudg		

* denotes a non-reportable result

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Category: SVOA										
Method: 8330B			Ма	trix:	٩Q					
Sample (D:TMW31S102015	Collec	10/29/	2015 11:	00:00	nalvsis 1	wpe-RE2			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
NITROBENZENE	0.16	J	0.21	LOD	0.43	LOQ	ug/L	J	RI, ProfJudg	
Sample ID:TMW40S102015	Collec	10/29/2015 8:21:00 Collected: AM Analysis Type: RF2							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,3,5-TRINITROBENZENE	2.2	J	0.43	LOD	1.1	LOQ	ug/L	J	Surr, ProfJudg	
2,4,6-TRINITROTOLUENE	0.081	J	0.21	LOD	0.43	LOQ	ug/L	J	RI, Surr, ProfJudg	
Sample ID:TMW40S102015	Collec	10/29/2015 8:21:00 Collected: AM Analysis Type: RES							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,3-DINITROBENZENE	0.21	UQ	0.21	LOD	0.43	LOQ	ug/L	R	Surr	
2,4-DINITROTOLUENE	0.21	UQ	0.21	LOD	0.43	LOQ	ug/L	R	Surr	
2,6-DINITROTOLUENE	0.21	UQ	0.21	LOD	0.21	LOQ	ug/L	R	Surr	
2-AMINO-4,6-DINITROTOLUENE	0.13	UQ	0.13	LOD	0.21	LOQ	ug/L	R	Surr	
2-NITROTOLUENE	0.21	UQ	0.21	LOD	0.43	LOQ	ug/L	R	Surr	
3-NITROTOLUENE	0.21	UQ	0.21	LOD	0.43	LOQ	ug/L	R	Surr	
4-AMINO-2,6-DINITROTOLUENE	0.13	UQ	0.13	LOD	0.21	LOQ	ug/L	R	Surr	
4-NITROTOLUENE	0.43	UQ	0.43	LOD	1.1	LOQ	ug/L	R	Surr	
NITROBENZENE	0.21	UQ	0.21	LOD	0.43	LOQ	ug/L	R	Surr	
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazo (HMX)	cine 14	QMJ	0.21	LOD	0.43	LOQ	ug/L	J	Surr, ProfJudg	
Sample ID:TMW44102015	Collec	10/29/ ted:AM	2015 9:1	0:00 A	nalysis 1	ype:RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2-AMINO-4,6-DINITROTOLUENE	0.98	J	0.14	LOD	0.23	LOQ	ug/L	J	ProfJudg	
4-AMINO-2,6-DINITROTOLUENE	0.49	J	0.14	LOD	0.23	LOQ	ug/L	J	ProfJudg	
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazo (HMX)	cine 2.5	M J	0.23	LOD	0.47	LOQ	ug/L	J	ProfJudg	

Project Name and Number: 102012 - USACE Project: USACE Project: FWDA 102012 GW

1/8/2016 10:58:20 AM

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Method Category:	VOA									
Method:	8260B	Matrix: AQ								
Sample ID:TMW181020	10/29/2015 1:20:00 Collected:PM Analysis Type:RES							Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TOLUENE		0.18	J	0.40	LOD	1.0	LOQ	ug/L	J	RI

Lab Reporting Batch ID: 280-76166-1

EDD Filename: Prep280-76166-1

Laboratory: TA DEN eQAPP Name: FtWingate_Primary_120405

Reason Code Legend

Reason Code	Description
Lcs	Laboratory Control Spike Lower Estimation
Mb	Method Blank Contamination
ProfJudg	Professional Judgment
RI	Reporting Limit Trace Value
Surr	Surrogate/Tracer Recovery Lower Estimation
Surr	Surrogate/Tracer Recovery Lower Rejection
Surr	Surrogate/Tracer Recovery Upper Estimation

1 - C	
117.	
-	

Reviewed By:			Approved By:		Laboratory: TA DEN		
Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code	
Lab Reporting Bate	ch: 280-76166-1						
Method: 6010C							
MW22S102015	280-76166-2	AQ	Ν	3005A	10/29/2015 9:11:00	S2AVE	
TMW18102015	280-76166-13	AQ	Ν	3005A	10/29/2015 1:20:00	S2AVE	
TMW18102015	280-76166-13	AQ	Ν	3010A	10/29/2015 1:20:00	S2AVE	
TMW21102015	280-76166-15	AQ	Ν	3005A	10/29/2015 1:05:00	S2AVE	
TMW21102015	280-76166-15	AQ	Ν	3010A	10/29/2015 1:05:00	S2AVE	
TMW22102015	280-76166-5	AQ	Ν	3005A	10/29/2015 11:59:00	S2AVE	
TMW22102015	280-76166-5	AQ	Ν	3010A	10/29/2015 11:59:00	S2AVE	
TMW30102015	280-76166-12	AQ	Ν	3005A	10/29/2015 12:05:00	S2AVE	
TMW30102015	280-76166-12	AQ	Ν	3010A	10/29/2015 12:05:00	S2AVE	
TMW31S102015	280-76166-11	AQ	Ν	3005A	10/29/2015 11:00:00	S2AVE	
TMW31S102015	280-76166-11	AQ	Ν	3010A	10/29/2015 11:00:00	S2AVE	
TMW39S102015	280-76166-10	AQ	Ν	3005A	10/29/2015 10:10:00	S2AVE	
TMW39S102015	280-76166-10	AQ	Ν	3010A	10/29/2015 10:10:00	S2AVE	
TMW41102015	280-76166-14	AQ	Ν	3005A	10/29/2015 10:42:00	S2AVE	
TMW41102015	280-76166-14	AQ	Ν	3010A	10/29/2015 10:42:00	S2AVE	
TMW44102015	280-76166-9	AQ	Ν	3005A	AM 10/29/2015 9:10:00	S2AVE	
TMW44102015	280-76166-9	AQ	Ν	3010A	AM 10/29/2015 9:10:00	S2AVE	
TMW46102015	280-76166-6	AQ	Ν	3005A	ам 10/29/2015 1:00:00	S2AVE	
TMW46102015	280-76166-6	AQ	Ν	3010A	РМ 10/29/2015 1:00:00 РМ	S2AVE	
Method: 6020A							
MW22S102015	280-76166-2	AQ	Ν	3005A	10/29/2015 9:11:00	S2AVE	
TMW18102015	280-76166-13	AQ	Ν	3005A	10/29/2015 1:20:00	S2AVE	
TMW18102015	280-76166-13	AQ	Ν	3020A	10/29/2015 1:20:00	S2AVE	
1/8/2016 10:24:30 AM		ADR version 1.9	.0.325 (Licensed For Use On USAC	E Projects Only)		Page 1 of 6	

Reviewed By:			Approved By:		Laboratory: TA DEN		
Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code	
Method: 6020A							
TMW21102015	280-76166-15	AQ	Ν	3005A	10/29/2015 1:05:00	S2AVE	
TMW21102015	280-76166-15	AQ	Ν	3020A	10/29/2015 1:05:00	S2AVE	
TMW22102015	280-76166-5	AQ	Ν	3005A	10/29/2015 11:59:00	S2AVE	
TMW22102015	280-76166-5	AQ	Ν	3020A	10/29/2015 11:59:00	S2AVE	
TMW30102015	280-76166-12	AQ	Ν	3005A	10/29/2015 12:05:00	S2AVE	
TMW30102015	280-76166-12	AQ	Ν	3020A	10/29/2015 12:05:00	S2AVE	
TMW31S102015	280-76166-11	AQ	Ν	3005A	10/29/2015 11:00:00	S2AVE	
TMW31S102015	280-76166-11	AQ	Ν	3020A	10/29/2015 11:00:00	S2AVE	
TMW39S102015	280-76166-10	AQ	Ν	3005A	10/29/2015 10:10:00	S2AVE	
TMW39S102015	280-76166-10	AQ	Ν	3020A	10/29/2015 10:10:00	S2AVE	
TMW41102015	280-76166-14	AQ	Ν	3005A	10/29/2015 10:42:00	S2AVE	
TMW41102015	280-76166-14	AQ	Ν	3020A	10/29/2015 10:42:00	S2AVE	
TMW44102015	280-76166-9	AQ	Ν	3005A	10/29/2015 9:10:00	S2AVE	
TMW44102015	280-76166-9	AQ	Ν	3020A	10/29/2015 9:10:00	S2AVE	
TMW46102015	280-76166-6	AQ	Ν	3005A	10/29/2015 1:00:00	S2AVE	
TMW46102015	280-76166-6	AQ	Ν	3020A	10/29/2015 1:00:00	S2AVE	
Method: 6860					РМ		
MW22S102015	280-76166-2	AQ	Ν	METHOD	10/29/2015 9:11:00	S2AVE	
TMW18102015	280-76166-13	AQ	Ν	METHOD	10/29/2015 1:20:00	S2AVE	
TMW21102015	280-76166-15	AQ	Ν	METHOD	10/29/2015 1:05:00	S2AVE	
TMW22102015	280-76166-5	AQ	Ν	METHOD	10/29/2015 11:59:00	S2AVE	
TMW30102015	280-76166-12	AQ	Ν	METHOD	10/29/2015 12:05:00	S2AVE	
TMW31S102015	280-76166-11	AQ	Ν	METHOD	10/29/2015 11:00:00	S2AVE	
TMW39S102015	280-76166-10	AQ	Ν	METHOD	10/29/2015 10:10:00	S2AVE	
1/8/2016 10:24:30 AM		ADR version 1.9	.0.325 (Licensed For Use On USAC	E Projects Only)	ΔΝΛ	Page 2 of 6	

Reviewed By:		Approved By:			Laboratory: TA DEN	
Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code
Method: 6860						
TMW41102015	280-76166-14	AQ	Ν	METHOD	10/29/2015 10:42:00	S2AVE
TMW44102015	280-76166-9	AQ	Ν	METHOD	10/29/2015 9:10:00	S2AVE
TMW46102015	280-76166-6	AQ	Ν	METHOD	ам 10/29/2015 1:00:00 РМ	S2AVE
Method: 7470A						
MW22S102015	280-76166-2	AQ	Ν	7470A	10/29/2015 9:11:00	S2AVE
TMW18102015	280-76166-13	AQ	Ν	7470A	10/29/2015 1:20:00	S2AVE
TMW21102015	280-76166-15	AQ	Ν	7470A	10/29/2015 1:05:00	S2AVE
TMW22102015	280-76166-5	AQ	Ν	7470A	10/29/2015 11:59:00	S2AVE
TMW30102015	280-76166-12	AQ	Ν	7470A	10/29/2015 12:05:00	S2AVE
TMW31S102015	280-76166-11	AQ	Ν	7470A	10/29/2015 11:00:00	S2AVE
TMW39S102015	280-76166-10	AQ	Ν	7470A	10/29/2015 10:10:00	S2AVE
TMW41102015	280-76166-14	AQ	Ν	7470A	10/29/2015 10:42:00	S2AVE
TMW44102015	280-76166-9	AQ	Ν	7470A	10/29/2015 9:10:00	S2AVE
TMW46102015	280-76166-6	AQ	Ν	7470A	10/29/2015 1:00:00 PM	S2AVE
Method: 8015C GRO	•					
TB-05-102015	280-76166-8	AQ	ТВ	METHOD	10/29/2015 9:05:00 AM	S2AVE
Method: 8081A						
MW02102015	280-76166-3	AQ	Ν	3510C	10/29/2015 9:50:00	S2AVE
TMW30102015	280-76166-12	AQ	Ν	3510C	10/29/2015 12:05:00	S2AVE
TMW31S102015	280-76166-11	AQ	Ν	3510C	10/29/2015 11:00:00	S2AVE
TMW39S102015	280-76166-10	AQ	Ν	3510C	10/29/2015 10:10:00	S2AVE
TMW41102015	280-76166-14	AQ	Ν	3510C	10/29/2015 10:42:00	S2AVE
TMW44102015	280-76166-9	AQ	Ν	3510C	10/29/2015 9:10:00	S2AVE
TMW46102015	280-76166-6	AQ	Ν	3510C	10/29/2015 1:00:00	S2AVE
1/8/2016 10:24:30 AM		ADR version 1.9.	0.325 (Licensed For Use On USAC	E Projects Only)	PM	Page 3 of 6

Reviewed By:		Approved By:			Laboratory: TA DEN	
Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code
Method: 8260B						
TB-04-102015	280-76166-7	AQ	ТВ	5030	10/29/2015 9:00:00	S2AVE
TMW18102015	280-76166-13	AQ	Ν	5030	10/29/2015 1:20:00	S2AVE
TMW21102015	280-76166-15	AQ	Ν	5030	10/29/2015 1:05:00	S2AVE
TMW22102015	280-76166-5	AQ	Ν	5030	10/29/2015 11:59:00	S2AVE
TMW30102015	280-76166-12	AQ	Ν	5030	10/29/2015 12:05:00	S2AVE
TMW31S102015	280-76166-11	AQ	Ν	5030	10/29/2015 11:00:00	S2AVE
TMW39S102015	280-76166-10	AQ	Ν	5030	10/29/2015 10:10:00	S2AVE
TMW41102015	280-76166-14	AQ	Ν	5030	10/29/2015 10:42:00	S2AVE
TMW44102015	280-76166-9	AQ	Ν	5030	10/29/2015 9:10:00	S2AVE
TMW46102015	280-76166-6	AQ	Ν	5030	10/29/2015 1:00:00	S2AVE
Method: 8270D					1 101	
TMW18102015	280-76166-13	AQ	Ν	3520C	10/29/2015 1:20:00	S2AVE
TMW22102015	280-76166-5	AQ	Ν	3520C	10/29/2015 11:59:00	S2AVE
TMW30102015	280-76166-12	AQ	Ν	3520C	10/29/2015 12:05:00	S2AVE
TMW31S102015	280-76166-11	AQ	Ν	3520C	10/29/2015 11:00:00	S2AVE
TMW39S102015	280-76166-10	AQ	Ν	3520C	10/29/2015 10:10:00	S2AVE
TMW40S102015	280-76166-1	AQ	Ν	3520C	10/29/2015 8:21:00	S2AVE
TMW41102015	280-76166-14	AQ	Ν	3520C	10/29/2015 10:42:00	S2AVE
TMW44102015	280-76166-9	AQ	Ν	3520C	10/29/2015 9:10:00	S2AVE
TMW46102015	280-76166-6	AQ	Ν	3520C	10/29/2015 1:00:00 PM	S2AVE
Method: 8330B						
TMW18102015	280-76166-13	AQ	Ν	3535	10/29/2015 1:20:00	S2AVE
TMW21102015	280-76166-15	AQ	Ν	3535	10/29/2015 1:05:00	S2AVE
TMW22102015	280-76166-5	AQ	Ν	3535	10/29/2015 11:59:00	S2AVE
1/8/2016 10:24:30 AM		ADR version 1.9	0.325 (Licensed For Use On USA	CE Projects Only)	ДКЛ	Page 4 of 6

Reviewed By:			Approved By:			Laboratory: TA DEN	
Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code	
Method: 8330B							
TMW30102015	280-76166-12	AQ	Ν	3535	10/29/2015 12:05:00	S2AVE	
TMW31S102015	280-76166-11	AQ	Ν	3535	10/29/2015 11:00:00	S2AVE	
TMW39S102015	280-76166-10	AQ	Ν	3535	10/29/2015 10:10:00	S2AVE	
TMW40S102015	280-76166-1	AQ	Ν	3535	10/29/2015 8:21:00	S2AVE	
TMW41102015	280-76166-14	AQ	Ν	3535	10/29/2015 10:42:00	S2AVE	
TMW44102015	280-76166-9	AQ	Ν	3535	10/29/2015 9:10:00	S2AVE	
TMW46102015	280-76166-6	AQ	Ν	3535	10/29/2015 1:00:00 PM	S2AVE	
Method: 9056							
TMW18102015	280-76166-13	AQ	Ν	METHOD	10/29/2015 1:20:00	S2AVE	
TMW21102015	280-76166-15	AQ	Ν	METHOD	10/29/2015 1:05:00	S2AVE	
TMW30102015	280-76166-12	AQ	Ν	METHOD	10/29/2015 12:05:00	S2AVE	
TMW31S102015	280-76166-11	AQ	Ν	METHOD	10/29/2015 11:00:00	S2AVE	
TMW39S102015	280-76166-10	AQ	Ν	METHOD	10/29/2015 10:10:00	S2AVE	
TMW41102015	280-76166-14	AQ	Ν	METHOD	10/29/2015 10:42:00	S2AVE	
TMW44102015	280-76166-9	AQ	Ν	METHOD	10/29/2015 9:10:00	S2AVE	
TMW46102015	280-76166-6	AQ	Ν	METHOD	10/29/2015 1:00:00 PM	S2AVE	

	Approved By:			Laboratory: TA DEN		
D Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code	
Label Legend						
Label Decription		EPA Level				
Stage_1_Validation_Electronic		N/A				
Stage_1_Validation_Manual		N/A				
Stage_1_Validation_Electronic_and_Mar	nual	N/A				
Stage_2A_Validation_Electronic		Level 3 w/o calibrat	ion			
Stage_2A_Validation_Manual		Level 3 w/o calibrat	ion			
Stage_2A_Validation_Electronic_and_M	anual	Level 3 w/o calibrat	ion			
Stage_2B_Validation_Electronic		Level 3 with calibra	tion			
Stage_2B_Validation_Manual		Level 3 with calibra	tion			
Stage_2B_Validation_Electronic_and_M	anual	Level 3 with calibra	tion			
Stage_3_Validation_Electronic		Level 4				
Stage_3_Validation_Manual		Level 4				
Stage_3_Validation_Electronic_and_Mar	nual	Level 4				
Stage_4_Validation_Electronic		Level 4				
Stage_4_Validation_Manual		Level 4				
Stage_4_Validation_Electronic_and_Mar	nual	Level 4				
Not_Validated		N/A				
	D Lab Sample ID Label Legend Label Decription Stage_1_Validation_Electronic Stage_1_Validation_Electronic_and_Mar Stage_2A_Validation_Electronic Stage_2A_Validation_Electronic_and_Mar Stage_2A_Validation_Electronic Stage_2B_Validation_Electronic Stage_2B_Validation_Electronic Stage_2B_Validation_Electronic Stage_3_Validation_Electronic Stage_3_Validation_Electronic Stage_3_Validation_Electronic Stage_3_Validation_Electronic Stage_4_Validation_Electronic Stage_4_Validation_Electronic Stage_4_Validation_Electronic Stage_4_Validation_Electronic Stage_4_Validation_Manual Stage_4_Validation_Manual Stage_4_Validation_Manual	D Lab Sample ID Matrix Cabel Legend Label Decription Stage_1_Validation_Electronic Stage_1_Validation_Manual Stage_1_Validation_Electronic_and_Manual Stage_2A_Validation_Electronic Stage_2A_Validation_Electronic Stage_2A_Validation_Electronic_and_Manual Stage_2B_Validation_Electronic Stage_2B_Validation_Electronic Stage_2B_Validation_Electronic Stage_3_Validation_Electronic Stage_3_Validation_Electronic Stage_3_Validation_Electronic Stage_3_Validation_Electronic Stage_3_Validation_Electronic Stage_3_Validation_Electronic Stage_4_Validation_Manual Stage_4_Validation_Electronic Stage_4_Validation	Lab Sample 1D Matrix Sample Type Cabel Legend Cabel Legend Cabel Legend Cabel Legend Label Decription EPA Level Cabel Legend N/A Stage_1_Validation_Electronic N/A N/A Stage_1_Validation_Electronic_and_Manual N/A N/A Stage_2A_Validation_Electronic_and_Manual N/A Cabel Stage_2A_Validation_Electronic_and_Manual Level 3 w/o calibrat Stage_2A_Validation_Electronic Level 3 w/o calibrat Stage_2B_Validation_Electronic Level 3 w/o calibrat Stage_2B_Validation_Electronic Level 3 w/o calibrat Stage_2B_Validation_Electronic Level 3 w/o calibrat Stage_2B_Validation_Electronic Level 3 with calibrat Stage_3 with calibrat Stage_3 with calibrat Stage_3_Validation_Electronic Level 4 Stage_4 validation_Electronic Level 4 Stage_3_Validation_Electronic Level 4 Level 4 Stage_4 validation_Electronic Level 4 Stage_4_Validation_Electronic Level 4 Level 4 Stage_4 validation_Electronic Level 4 Stage_4_Validation_Electronic Level 4 Level 4 Stage_4 validation_Electronic Level 4 Stage_4_Validation_Elect	Approvel By: Iab Sample IDMatrixSample IJ:Preparation Sample IJ:Labe J ecriptionEPA LevelLabel J ecriptionKPA LevelStage 1 validation_ElectronicN/AStage 1 validation_ElectronicN/AStage 1 validation_ElectronicN/AStage 1 validation_ElectronicN/AStage 1 validation_Electronickevel 3 wio calibrationStage 1 validation_ElectronicLevel 3 wio calibrationStage 2 validation_ElectronicLevel 3 wio calibrationStage 2 A validation_ElectronicLevel 3 wio calibrationStage 2 B validation_ElectronicLevel 3 wio calibrationStage 2 B validation_ElectronicLevel 3 with calibrationStage 2 B validation_Electronic and ManualLevel 3 with calibrationStage 2 B validation_ElectronicLevel 3 with calibrationStage 3 validation_ElectronicLevel 3 with calibrationStage 3 validation_Electronic and ManualLevel 4Stage 3 validation_ElectronicLevel 4Stage 3 validation_Electronic and ManualLevel 4Stage 4 validation_Electronic and	Approv Item of the sample ID Matrix Sample IP Preparation Method Collection Date Cabes Stage 1 Stage 1 Stage 1 Stage 1 Stage 1 NA Stage 1 Validation_Electronic NA Stage 1 Validation_Manual NA Stage 1 Validation_Electronic and Manual NA Stage 2.4 Validation_Electronic and Manual NA Stage 2.4 Validation_Electronic and Manual Level 3 w/o calibration Stage 2.4 Stage 2.4 Stage 2.4 Validation_Electronic and Manual Level 3 w/o calibration Stage 2.4 Validation_Electronic and Manual Level 3 w/o calibration Stage 2.4 Stage 2.4 Stage 2.4 Validation_Size 2.5 Stage 2.4 Stage 2.4 Validation_Size 2.5 Stage 2.4 Stage 2.4<	

Ĭ